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Abstract

Reaction-diffusion (RD) computer models are suitable to
investigate the mechanisms of cardiac arrthymias but not
directly applicable in clinical settings due to their compu-
tational cost. On the other hand, alternative faster eikonal
models are incapable of reproducing reentrant activation
when solved by iterative methods. The diffusion reac-
tion eikonal alternant model (DREAM) is a new method
in which eikonal and RD models are alternated to allow
for reactivation. To solve the eikonal equation, the fast it-
erative method was modified and embedded into DREAM.
Obtained activation times control transmembrane voltage
courses in the RD model computing, while repolarization
times are provided back to the eikonal model. For a pla-
nar wave-front in the center of a 2D patch, DREAM ac-
tion potentials (APs) have a small overshoot in the upstroke
compared to pure RD simulations (monodomain) but sim-
ilar AP duration. DREAM conduction velocity does not
increase near boundaries or stimulated areas as it occurs
in RD. Anatomical reentry was reproduced with the S1-S2
protocol. This is the first time that an iterative method is
used to solve the eikonal model in a version that admits re-
activation. This method can facilitate uptake of computer
models in clinical settings. Further improvements will al-
low to accurately represent even more complex patterns of
arrhythmia.

1. Introduction

Reaction-diffusion (RD) computer models are suitable
to investigate the mechanisms of cardiac arrhythmias but
not directly applicable in clinical settings due to their com-
putational cost. For instance, The monodomain equation
correspond to one of the RD models in which equal extra
and intracellular anisotropy ratios are assumed:

βCm
∂Vm

∂t
= ∇ · σm∇Vm − β(Iion(Vm, η)) (1)

where β is the surface-to-volume ratio, Cm is the capaci-

tance per unit area, Vm is the transmembrane voltage, σm is
twice the harmonic mean of the extra and intracellular con-
ductivities and, Iion is the current density passing through
the ionic channels that depends on state variables η.

Alternatively, numerical solutions of the eikonal equa-
tion are significantly faster than RD equations due to the
simplicity of the eikonal equation and the relaxed mesh res-
olution requirements:

√
∇T>M∇T = 1 , (2)

where M is the squared conduction velocity (CV) ten-
sor and T is the mapping function between nodes’ coor-
dinates and their activation times (AT). The eikonal model
provides a close approximation of electrical wave propaga-
tion under healthy conditions if only one activation cycle
is represented. However, standard eikonal methods do not
account for repolarization or reactivation of the cardiomy-
ocytes. This limitation prevents the simulation of reentry,
which is a major limitation in the context of complex ar-
rhythmia. To overcome this problem, Pernod et al. and
Gassa et al. introduced new methods based on a modi-
fied version the Fast Marching Method (FMM) to allow
reactivation of the nodes while solving the eikonal equa-
tion [1, 2]. Nonetheless, numerical errors can appear when
using single pass methods because the characteristics of
the anisotropic Eikonal equation do not align with the gra-
dient vector of its viscosity solution [3]. These numer-
ical errors are more relevant in areas where the gradient
of the wave-front does not match the characteristic of T .
These errors do not decrease numerical stability and then
can be unnoticed. Alternative methods have been proposed
to solve the anisotropic eikonal equation such as the Fast It-
erative Method (FIM) [4] and the Buffered Fast Marching
Method [5].

There are two factors that hinder reproducing reentry
with iterative solution methods. First, ATs can change sev-
eral times while solving the eikonal equation iteratively
unlike in single pass methods. Second, ATs and repolar-
ization times (RTs) have a mutual dependency. The RT of
every node in a given cycle depends on the effective refrac-
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tory period and AT in the same cycle. Similarly, the AT de-
pends on whether repolarization from the activation in pre-
vious cycle happens before or after an activation attempt.
These two conditions are challenging for the calculation of
the AT in the next cycle given that the AT from the first
cycle is constantly being updated. Normally, the final con-
verged ATs are only known at the end of the simulation.
However, ATs are required earlier in the algorithm when
simulating reentry. In this work, DREAM is introduced as
a novel method to overcome this major limitation.

2. Methods

DREAM is a mixed model in which the RD model and
the eikonal model are combined and alternated in time. The
goal of this model is to accurately simulate reactivation pat-
terns in low-resolution meshes where the RD model would
fail (i.e. element size of 800 µm). DREAM is inspired
by the reaction eikonal model [6] and the multi-frontal
Fast Marching Method [1]. The FIM is used to solve the
anisotropic eikonal equation.

Figure 1 shows the steps involved in DREAM. First, the
FIM is iterated until the minimum AT of the nodes in the
active list is greater than a given period of time τe (Figure 1,
Step 1). Then, the calculated ATs are used to compute Idiff

that approximates the diffusion current of a planar wave-
front on a high resolution patch (element size of 200 µm)
solved with the pure monodomain model [2]. Idiff is de-
fined as a triple Gaussian function with parameters opti-
mized to decrease the error between Idiff and the diffusion
current in a high resolution mesh (Figure 2). Then, the RD
model is computed by adding Idiff to the right hand side of
the parabolic equation of the system (Figure 1, Step 2):

βCm
∂Vm

∂t
= Idiff − β(Iion(Vm, η)) (3)

similar to the RE− version of the reaction eikonal
model [6].

To avoid conflict due to the constant updates of the ATs,
the RD model is only computed until t = τe − τs, where
τs is a ”safety margin” in time to assure that the nodes
with ATs that belong to the interval [0, τe − τs] are not af-
fected by following iterations (Figure 1, Step 3). While the
RD model is running, RTs are defined as the time points
when the transmembrane voltage of an activated node X
crosses the threshold νth = −70mV) to more negative
values (Figure 1, Step 4).

It is possible that some activated nodes do not cross
that threshold in the interval [0, τe − τs]. Nonetheless,
their RTs are required to know whether they can be re-
activated in the next FIM iteration. To solve this issue,
the ionic model is used to approximate the Vm to ob-
tain approximated RT (R̃T ). The ionic model is run for

Figure 1. Steps of DREAM algorithm: Eikonal and RD
models alternate to calculate ATs and Vm, respectively.
ATs calculated with FIM are used to compute Idiff needed
in the RD model. Vm calculated with the RD model is
used to get real or approximated RTs needed in the FIM
to solve eikonal equation. Numbers indicate the order in
which DREAM runs every step, τe is the time period cal-
culated by FIM every iteration, and τs is the safe margin of
time to avoid conflicts between cycles

t ∈ [τe − τs,min(R̃T, 2τe)]. Once all the nodes are as-
signed with real or approximated RTs, the eikonal model
runs again until the minimum AT of the nodes in the active
list is greater than 2τe. This process is repeated by alternat-
ing models until t reaches the end of the simulation time
(Figure 1, Steps 5, 6, 7 and 8).

To test the model, two experiments were performed the
first in a 2D patch and the second in a 3D ring. The
2D patch consisted of a triangular mesh of 5 × 5 cm and
resolutions of 200 µm and 800 µm for the RD model and
DREAM, respectively. The planar waves were produced
by stimulating one edge of the patch. The second stimu-
lus was applied 400ms after the first stimulus at the same
location. The monodomain model was selected as the RD
model. CV for DREAM was 1000mms−1 and the con-
ductivities were tuned accordingly for the RD model. We
chose the human atrial cell model suggested by Courte-
manche et al. [7]. For the anatomical reentry in a 3D mesh,
a ring-shaped mesh of tetrahedral elements was used. The
average resolution in the ring was 576 µm) for both mod-
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Figure 2. Idiff fitted to the diffusion current obtained from
pure monodomain simulation of a planar wave on a high-
resolution mesh. A triple Gaussian is used to approximate
the diffusion current. AT ≈ 24ms.(Sample Frequency:
1 kHz)

els. The inner and outer diameters were 20 and 24mm
respectively. The CV in the longitudinal direction was
200mms−1 with an anisotropy ratio of 3. Monodomain
conductivities were tuned to match these velocities. An
S1-S2 protocol was used to induce unidirectional block fol-
lowed by reentry. The first stimulus was applied at approx-
imately 60◦ from the first stimulus and 328ms) later. The
sample frequency was 1 kHz unless stated otherwise. All
tissue simulations were performed using openCARP [8].

3. Results

In the RD model, wave propagation in the 2D high-
resolution patch was accelerated close to the stimulated
edge and the opposing mesh boundary. DREAM in the
2D low-resolution patch kept a constant CV everywhere.
Figure 3 compares action potentials (APs) in both mod-
els. Action potential durations (APDs) difference between
models was smaller than 1ms (Figure 3A) and the upstroke
was closely matching with a small overshoot in DREAM
(Figure 3B). The CV after the second stimulus in DREAM
model did not change while the APD shortened. In the RD
model both APD and CV decreased as expected. If the time
period between stimulus was prolonged to 1000ms, CV
and APD did not change in both models (data not shown).

The experiment in the ring produced an anatomical reen-
try in both models. Figure 4 shows the maps of the last AT
for each node at 850ms in both models and the difference
map between the two models. The reentry cycle length was
≈320ms at that moment. The cycle length in DREAM
simulation remained constant over time while the cycle
length in the RD model prolonged over time due to CV
restitution. In the RD model (Figure 4A), these differences
were smaller and the wave-front was almost perpendicular
to the boundaries. In DREAM (Figure 4B), nodes located
at the inner boundary had earlier ATs than the nodes lo-
cated at the outer boundary at the same angle due to the

Figure 3. A) Complete APs of RD and DREAM for a
node in the center of the mesh. B) AP upstroke (Sample
Frequency: 4 kHz ).

shorter geodesic distance to the stimulus location. The dif-
ference map (Figure 4C) shows that propagation in the RD
model accelerated at the outer boundary and slowed down
at the inner boundary.

4. Discussion

DREAM features several characteristics from previously
implemented eikonal models [1, 2, 6]. The novelty of this
model lies in incorporating node reactivation while solving
the eikonal equation with an iterative method. The FIM
has the advantage of being more suitable for propagation
in anisotropic media than single pass methods as FMM [4].
Additionally, the FIM can parallelize which would further
increase computational speed in the future. The DREAM
requires slightly longer computational times than the RD
model when compared on the same mesh. However, com-
putational speed is gained from the possibility to use the
DREAM in coarse meshes in which the RD models di-
verge.

Our results show that reactivation patterns such as
prepacing a 2D patch and anatomical reentries are possi-
ble. To reproduce physiological reentries, it is necessary
to incorporate at least the influence of the diastolic interval
on the CV [2, 9]. Nonetheless, additional factors (i.e. wall
thickness, wave-front curvature, source-sink mismatch ef-
fects) that markedly affect CV should also be incorporated
to accurately reproduce diseased conditions.
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Figure 4. Anatomical reentry: A) ATs in the RD model
(ATRD). B) ATs in DREAM (ATDREAM ). C) Error map
ATDREAM - ATRD.
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